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From simulations of two-dimensional inverse energy cascading turbulence, we show that points with low
acceleration values are predominantly advected by the local fluid velocity. The fluid velocity u in the global
frame and the fluid velocity � in the frame moving with a low-acceleration point are approximately statistically
independent. This property remains valid in high-acceleration regions but only in the direction of the local
acceleration vector. In the perpendicular direction, the acceleration velocity Va=u−� is approximately inde-
pendent of � everywhere. These statistical independences constitute our formulation of the sweeping decorre-
lation hypothesis for two-dimensional inverse energy cascading turbulence.
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Sweeping, the advection of small eddies by eddies of
larger size, is a crucial mechanism in turbulent flows. It has
been shown to dominate the variance of the Eulerian time
derivative of the velocity, as it contributes more to it than the
fluid acceleration at high Reynolds numbers �1�. This domi-
nance of sweeping implies a degree of persistence in the
local frame of reference moving with the fluid, so that the
velocity vector approximately follows the trajectory of a
fluid element �2�. It has been suggested that, similarly,
sweeping dominates the Eulerian temporal fluctuations of the
acceleration itself, with the corollary that the acceleration is
nearly constant along most fluid trajectories and that the ve-
locity with which the acceleration moves in a turbulent flow
is approximately equal to the local fluid velocity �3�. Several
variables were introduced to quantify the sweeping of zero-
acceleration points, the first being the acceleration velocity
Va=ds�t� /dt, where s�t� is the position of a point that moves
so that the acceleration on it is constant in time
�da�s�t� , t� /dt=0�. The second such quantity is the difference
between the flow velocity and the acceleration velocity, de-
noted by �=u−Va. That a=0 points are swept, on average,
by the fluid follows from Kolmogorov scaling applied to
��2 �a=0	 which, as recently shown �3�, gives

��2�a = 0	 � u�2�L/��−2/3, �1�

in terms of the rms fluid turbulence velocity u� and the outer
and inner length scales of the homogeneous isotropic turbu-
lence L and �. The resulting asymptotic statistical corre-
spondence between Va and u in the limit where the Reynolds
number Re
�L /��3/4 tends to infinity establishes the prop-
erty that zero-acceleration points are predominantly swept by
the fluid velocity in high-Re turbulence. This matters as the
sweeping property of much of the acceleration field under-
pins the “sweep-stick” mechanism recently introduced to ex-
plain the preferential concentration of small and heavy iner-

tial particles in homogeneous isotropic turbulence �3–5�. In
terms of ��2 �a=0	 only, this result remains rather weak. A
much stronger statement than Eq. �1� would be in the coin-
cidence of the probability distribution functions �PDFs� of
the acceleration and fluid velocities and in the form of the
joint PDFs. The present study aims at refining the character-
ization of the velocity at which points with zero, as well as
finite, acceleration travel in a turbulent flow, by investigating
conditional PDFs of the acceleration velocity and joint PDFs
of the fluid and acceleration velocities in numerical simula-
tions of two-dimensional, inverse cascading turbulence.

The numerical procedure is similar to that described in
�4�, and we simply recall its main features. A two-
dimensional stationary, homogeneous, isotropic turbulent ve-
locity field, with a well-defined inertial range in which en-
ergy is transferred from small to large scales, is established
and sustained by holding the entropy constant at high wave
numbers in a shell around kf. The kinetic energy wave num-
ber spectrum in the inertial range has a power-law depen-
dence with a −5 /3 exponent, as expected from the inverse
cascade regime in the flow �6–8�. Since our interest is in the
turbulence dynamics, forcing scales are removed by low-pass
filtering of the velocity field in wave number space. The
inner cutoff wavelength is then defined as �=2� /kc where
kc�kf is the cutoff wave number. The spatial resolution in
the simulation is moderate, with a grid using 5122 points,
which allows one to reach a maximum scale separation
L /��12. The acceleration field is computed exactly, via its
Fourier transform âi�k�, as a function of the velocity field:

âl�k� = i�
m,n

klkmkn

k2 umun
̂�k� − D�k�ûl�k� , �2�

where b̂�k� denotes the Fourier transform of the field b, ki
and ui the components of the wave vector and velocity vec-
tor, and D�k� is a generalized dissipation operator �4�. The
time derivative of the acceleration, required to compute the
acceleration velocity, is obtained in a similar manner. The
scaling of the acceleration variance, established by varying
the cutoff wave number, follows the scaling �a2	1/2
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�u�2L−1�L /��1/3. It shows that our filtering procedure pre-
serves the small-scale character of the acceleration, since the
Kolmogorov scaling �9� relies on the latter. We also confirm
the Kolmogorov-type scaling of ��2 �a=0	 given by Eq. �1�.

Owing to the isotropy of the flow, the unconditional ve-
locity statistics are invariant to rotation of the direction along
which the velocity vector is projected, and this also applies
to statistics taken on points with zero acceleration, so that the
statistics of only one component of velocity vectors is re-
ported here.

Figure 1 �left� shows that, even for the moderate scale
separation reached in this simulation, the conditional fluid
and acceleration velocity distributions are almost indistin-
guishable for amplitudes up to 3u�, and are both nearly
Gaussian. Closer investigation of both PDFs in a semiloga-
rithmic representation �Fig. 1 �right�� shows that the agree-
ment is incomplete and breaks down at amplitudes larger
than 2u� where the acceleration velocity has long tails, which
contrast with the Gaussian fall-off of the velocity distribu-
tion. At these values, the acceleration velocity is much larger
than any reasonable local fluid velocity and in all likelihood,
events constituting the tails of the distribution are excep-
tional �though not unimportant� dynamical events where the
acceleration changes rapidly along a fluid element trajectory,
in which case sweeping is irrelevant. These events, however,
are rare, with a probability density not exceeding 1 /100, so
that the PDFs of the acceleration velocity and the fluid ve-
locity are nearly the same except for high amplitudes.

It is legitimate to question whether the near equality of
both distributions is not accidental but also applies locally, as
required in order to prove the sweeping of zero-acceleration
points with the fluid. We therefore examine the joint PDFs of
the velocities, shown in Fig. 2, with the aim of discarding a
possible statistical independence between the acceleration
velocity and the fluid velocity that would exist if the local,
statistical equality was not verified. This can be done directly

since, given the symmetry of the individual velocity PDFs, if
a couple of velocities are statistically independent, their joint
probability must be an even function of its arguments.

Formally, none of the three joint PDFs shown in Fig. 2
exactly satisfies the symmetry properties required by statis-
tical independence. The left plot of Fig. 2 indicates that the
strongest statistical dependence occurs between the accelera-
tion velocity and the fluid velocity, whose joint PDF �Fig. 2
�right�� can be approximated as p�Va ,u�= f�u�g�u−Va� be-
cause u and � seem to be the least statistically dependent of
the variables plotted in Fig. 2. The crucial point is that the
PDF g��� has its maximum at �=u−Va=0 and hence, for a
given fluid velocity u, the likeliest value taken by the accel-
eration velocity at zero-acceleration points is equal to u. This
observation and Eq. �1� establish statistically the sweeping of
zero-acceleration points by the local fluid velocity.

We now investigate the degree to which this result can be
extended to points with finite acceleration by considering
statistics of the three velocities conditional on �a�
= �a� /2,a� ,2a� ,4a��, where a� is the global rms value of the
acceleration. These statistics are no longer invariant by rota-
tion and must be considered separately in the directions
along the acceleration vector �longitudinal direction, sub-
script 
� and normal to it �transverse direction, with subscript
��. The differences between both velocity components are
evident in Table I, where it is shown that the conditional
velocity variance has a maximum for �a�=a� in the longitu-
dinal direction, while it is a monotonically increasing func-
tion of �a� /a� for the sampled acceleration amplitudes in the
transverse direction. Furthermore, the PDFs differ in shape
depending on the orientation relative to the acceleration vec-
tor since conditional flatnesses �see Table I� take values
neighboring 3 for all accelerations in the longitudinal direc-
tion, suggesting that the corresponding velocity PDFs are
near Gaussian, but decrease with acceleration in the trans-
verse direction, indicating progressive departure from nor-
mality in this direction.

Our concern here is how the fluid velocity statistics com-
pare with the statistics of the acceleration velocity and,

TABLE I. Velocity statistics conditional on the acceleration.

�a� �u

2	 �u�

2 	 �u

4	 / �u


2	2 �u�
4 	 / �u�

2 	2

0 0.708 0.706 3.174 3.200
a� /2 0.836 0.947 3.065 2.831
a� 0.883 1.290 3.069 2.482

2a� 0.831 2.163 3.266 1.982
4a� 0.703 3.615 3.184 1.616

Global 0.826 1.171 3.027 2.690
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FIG. 1. PDFs of the fluid and acceleration velocities normalized
by u� on points with zero acceleration in linear �left� and semiloga-
rithmic �right� representations.
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FIG. 2. �Color online� Joint PDFs p�Va ,u�
�left�, p�u ,�� �middle�, and p�Va ,�� �right� on
points with zero acceleration.
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should points with finite acceleration be swept with the fluid,
we would expect both velocity distributions to be similar
regardless of the direction relative to the local acceleration
vector. Direct comparison of the distributions through their
sole moments is prevented by the tails of the acceleration
velocity distribution already evoked for zero acceleration
points, which contribute greatly to the variance of the distri-
bution and lead to divergence of the fourth-order moment.
These tails, not shared by the velocity PDFs, further imply
that correspondence between the velocity distributions can
occur only at moderate velocity, and this limited correspon-
dence can only be assessed by consideration of the distribu-
tions themselves.

Figure 3 shows the conditional PDFs for velocities up to
3u�. In the longitudinal direction, both u and Va have PDFs
close to Gaussian for velocities lower than 2u�, but their
variances vary with acceleration. For Va, this variation re-

sults from changes in both the tails and the Gaussian part of
the PDF. More pronounced differences are visible in the
transverse direction where, in contrast with the acceleration
velocity PDF �Fig. 3, top left�, which depends only weakly
on the acceleration and mirrors the PDF already given for
zero-acceleration points, the other two PDFs �for the fluid
velocity u and for �, in Fig. 3, bottom left and right� vary in
shape with the acceleration amplitude and progressively
broaden. This broadening is negligible when the acceleration
is smaller than a� but becomes significant for �a��a� when
both PDFs become bimodal, likely as a result of the coexist-
ence of identically distributed left- and right-handed intense
vortices in the turbulence. This aspect is particularly marked
in the PDF of the transverse difference velocity �. It here
appears that the fluid and acceleration velocities differ quali-
tatively and systematically on points where the acceleration
is greater than or comparable to a�. The statistical correspon-
dence between Va and u observed for zero-acceleration
points therefore remains a good approximation for low-
acceleration points but cannot be generalized to points with
acceleration larger than a�.

We now consider joint PDFs conditional on acceleration
values, both high and low, e.g., as in Fig. 4, where we report
results for acceleration �a�=4a�. These joint PDFs are distrib-
uted around a single peak in the longitudinal direction but
exhibit two distinct lobes in the transverse direction. These
observations are valid for all acceleration values. The two
PDF lobes in the transverse direction are very close to each
other, and therefore nearly indistinguishable, at small accel-
eration values, but become clearly distinct as the acceleration
magnitude increases above a�. Results such as Fig. 4, which
we have obtained for different conditional accelerations sug-
gest the following two statistical decorrelations irrespective
of the conditional acceleration value: �1� the velocity � and
the fluid velocity are statistically independent in the longitu-
dinal direction, and �2� the acceleration velocity and the ve-
locity � are statistically independent in the transverse direc-
tion.

These hypotheses enable us to write the joint PDFs as
functions of the single velocity PDFs:

p�Va
,�
� = p��
�pu

�Va
 + �
� , �3�

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

p(
V

a⊥
/u

')

Va⊥/u'

a=0
a=a'
a=2a'

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

p(
V

a|
|/u

')

Va||/u'

a=0
a=a'

a=2a'

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

p(
u ⊥

/u
')

u⊥/u'

a=0
a=a'

a=2a'

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

p(
ξ ⊥

/u
')

ξ⊥/u'

a=0
a=a'

a=2a'

(b)(a)

(c) (d)

FIG. 3. �Color online� PDFs of the transverse component of the
fluid velocity �top left�, the longitudinal acceleration velocity �top
right�, the transverse fluid velocity �bottom left�, and the transverse
component of � �bottom right� for �a�= �0,a� ,2a��.
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FIG. 4. �Color online� Joint PDFs sampled on
points with �a�=4a�: p�Va ,�� �left�, p�u ,��
�middle�, and p�Va ,u� �right� in the longitudinal
�upper row� and the transverse �lower row�
direction.
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p�Va
,u
� = p�u
�p�

�u
 − Va 
 � , �4�

p�u�,��� = p����pVa�
�u� − ��� , �5�

p�Va�,u�� = p�Va��p��
�u� − Va�� . �6�

The joint PDFs obtained using Eqs. �3�–�6� are plotted in
Fig. 5, and despite the lack of exact symmetry of the joint
PDFs p�u
 ,�
� and p�Va� ,��� necessary for exact statistical
independence to apply, there is good qualitative agreement
with the actual joint PDFs, thus supporting the observed ap-
proximate statistical independences. The approximate statis-
tical independence in the transverse direction is especially
interesting because it is reminiscent of the sweeping decor-
relation hypothesis used in �10�, this time expressed as an
approximate decorrelation between the transverse accelera-
tion velocity Va and the transverse fluid velocity in the local
frame moving with this velocity �. It is noteworthy that the
type of ‘‘sweeping decorrelation’’ which we observe here is
approximately valid for all acceleration levels in the trans-
verse but not in the longitudinal direction where it is the fluid
velocity u in the global frame of reference, which is approxi-
mately decorrelated with �. However, where the acceleration
is small compared to a�, Va�u. It is therefore fair to say that
in those regions of low acceleration the relative velocity � is
independent of the acceleration velocity Va that sweeps the
local acceleration field, irrespective of the transverse or lon-
gitudinal orientation. This reformulated sweeping decorrela-
tion breaks down where the acceleration is comparable to or
above a� but only in the longitudinal direction, and it is
interesting, and perhaps even unexpected, that it survives at
such high accelerations in the transverse direction.

Our reformulated sweeping decorrelation property implies
that the turbulent fluid velocity u is a sum of two velocities
Va and �, which are approximately decorrelated where the
acceleration is relatively weak and approximately decorre-
lated in the transverse direction everywhere �irrespective of
whether the local acceleration is weak or high�. The statistics
of these two velocities depend differently on the accelera-
tion. As shown in Fig. 3, the PDF of Va retains the same,
approximate Gaussian shape at all acceleration values but
predominantly changes variance with conditional accelera-
tion level. The same figure shows that the dependence of the
PDF of the difference velocity � is more dramatic, involving
a clear move from an apparently single-lobe to a clearly
double-lobe structure as conditional acceleration level in-
creases. The qualitative shape of the transverse turbulence
fluid velocity’s PDF and the acceleration dependence of this
shape are dominated by the transverse difference �.

In summary, this work on acceleration motion in two-
dimensional, inverse cascading turbulence shows that points
with low acceleration are predominantly swept with the fluid.
For large accelerations, the acceleration velocity Va and fluid
velocity u differ statistically, as illustrated by their respective
Gaussian and non-Gaussian distributions in the direction per-
pendicular to the acceleration, and sweeping therefore no
longer applies. Nevertheless, approximate statistical indepen-
dence is observed for all accelerations: between the longitu-
dinal projections of the fluid velocity u in the global frame
and the fluid velocity � in the frame moving with the local
acceleration, and between the transverse projections of � and
Va. These statistical properties constitute our formulation of
the sweeping decorrelation hypothesis for two-dimensional
inverse energy cascading turbulence.
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FIG. 5. �Color online� Joint PDFs, computed
using the single-velocity PDFs in conjunction
with Eqs. �3�–�6� on points with �a�=4a�:
p�Va ,�� �left�, p�u ,�� �middle�, and p�Va ,u�
�right� in the longitudinal �upper row� and trans-
verse �lower row� directions.
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